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Abstract

Machine learning analysis of biomedical images has seen significant recent ad-
vances. In contrast, there has been much less work on medical videos, despite the
fact that videos are routinely used in many clinical settings. A major bottleneck
for this is the the lack of openly available and well annotated medical video data.
Computer vision has benefited greatly from many open databases which allow
for collaboration, comparison, and creation of medical task specific architectures.
We present the EchoNet-Dynamic Dataset of 10,036 echocardiography videos,
spanning the range of typical echocardiography lab imaging conditions, with corre-
sponding labeled measurements including ejection fraction, left ventricular volume
at end-systole and end-diastole, and human expert tracings of the left ventricle as an
aid in studying automated approaches to evaluate cardiac function. We additionally
present the performance of three 3D convolutional architectures for video classifi-
cation used to assess ejection fraction to near-expert human performance and as
a benchmark for further collaboration, comparison, and creation of task-specific
architectures. To the best of our knowledge, this is the largest labeled medical
video dataset made available publicly to researchers and medical professionals and
first public report of video-based 3D convolutional architectures to assess cardiac
function.

1 Introduction

Echocardiography is the most widely used and readily available imaging technique to assess cardiac
function and structure. Combining rapid image acquisition, high temporal resolution, and without the
risks of ionizing radiation, echocardiography serves as the backbone of cardiovascular imaging [22, 9]
and is one of the most frequently used imaging studies in the United States [5]. Information from
echocardiography is used by cardiologists, surgeons, emergency physicians, anesthesiologists, and
oncologists among other physicians as echocardiography is used for perioperative risk stratification,
manage cardiovascular risk of patients with oncologic disease undergoing chemotherapy, and aid
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in the diagnosis and surgical planning of cardiovascular disease[24, |1 |17]. For indications ranging
from cardiomyopathies to valvular heart diseases, echocardiography is both necessary and sufficient
to diagnose many cardiovascular diseases.

Despite its importance in clinical phenotyping, there is variance in the human interpretation of
echocardiogram images that could impact clinical care [29, 14} 18] and there is significant interest
in improving measurement precision and reproducibility [26,[11]. Formalized training guidelines
for cardiologists recognize the value of experience in interpreting echocardiogram images and basic
cardiology training might be insufficient to interpret echocardiograms at the highest level [33] even
as other physicans are beginning to use point-of-care ultrasound for bedside diagnosis [[7]]. Previous
work using deep learning to estimate ejection fraction from echocardiography has been limited to
still-image based methods and have significant variance from human measurements [35} 121} 23}, [15]].
The limited published work on the direct comparison of performance of different architectures to
predict ejection fraction [3},34].

Figure 1: Representative frames from the EchoNet-Dynamic dataset. Eleven frames of five indepen-
dent videos are shown after pre-processing removing ECG data, text labels, and ultrasound acquisition
information. Each video is matched with calculations and measurements from the clinical report.

Echocardiography is a uniquely well-suited imaging modality for the application of deep learning
in cardiology. In addition to standardized imaging windows and views, echocardiography reporting
systems often uses structured reporting, readily making clinical databases available for model training
on diverse phenotypes. Many previous studies of deep learning on medical imaging focused on
resource-intensive imaging modalities common in resource-rich settings [6l 2] or subspeciality
imaging with focused indication [25, |10} 28]. These modalities often need retrospective annotation by
experts, while the standard clinical workflow of echocardiography includes detailed measurements,
labels, and region specific interpretations.

In this paper, we introduce a new large video dataset of echocardiograms for computer vision research.
The EchoNet-Dynamic database was created to provide images to study cardiac motion and chamber
volumes using echocardiography, or cardiac ultrasound, videos obtained in real clinical practice for
diagnosis and medical decision making. Clinically important metrics, such as ejection fraction, are
linked with representative echocardiography videos for supervised training tasks. We developed this
dataset because there is a current lack of such a dataset of echocardiogram videos, and we believe
a dataset large enough to train deep neural networks and also large enough to act as a performance
benchmark can be used to assess different model architectures can advance the field of deep learning
on echocardiography.
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Figure 2: Diagram representing standard clinical workflow in assessing cardiac functions. Based
on cardiac timing, human experts trace the chamber size of the left ventricle to obtain end diastolic
volume (EDV) and end systolic volume (ESV). The ratio of ESV and EDV is used to calculate the
ejection fraction (EF).

2 Overview of the EchoNet-Dynamic Dataset

2.1 Composition

A standard full resting echocardiogram study consists of a series of 50-100 videos and still images
visualizing the heart from different angles, locations, and image acquisition techniques (2D images,
tissue Doppler images, color Doppler images, and others). In this dataset, one apical-4-chamber 2D
gray-scale video is extracted from each study. Each video represents an unique individual as the
dataset contains 10,036 echocardiography videos from 10,036 random individuals who underwent
echocardiography between 2006 and 2018 as part of clinical care at a University Hospital. The
apical-4-chamber view video was identified by extracting the Digital Imaging and Communications In
Medicine (DICOM) file linked to measurements of ventricular volume used to calculate the ejection
fraction in the apical-4-chamber view.

Table 1: Dataset Label Variables

Variable Description

FileName Hashed file name used to link videos, labels, and annotations
Age Age in years, rounded to nearest year

Sex Sex reported in medical record

EF Ejection fraction calculated by ratio of ESV and EDV

ESV End systolic volume calculated by method of discs

EDV End diastolic volume calculated by method of discs

Height Video Height

Width Video Width

FPS Frames Per Second

NumFrames Number of Frames in whole video

Split Classification of train/validation/test sets used for benchmarking

2.2 Clinical Measurements and Calculations

In addition to the video itself, each study is linked to clinical measurements and calculations obtained
by a registered sonographer and verified by a level 3 echocardiographer in the standard clinical
workflow. A central metric of cardiac function is the left ventricular ejection fraction [20, |13} 29],
used to diagnose cardiomyopathy, assess eligibility for certain chemotherapies, and determine
indication for medical devices. Left ventricular ejection fraction has a significant relationship with
mortality in many disease states, with lower ejection fraction correlating with worse prognosis [31]].



The ejection fraction is expressed as a percentage and is the ratio of left ventricular end systolic
volume (ESV) and left ventricular end diastolic volume (EDV) determined by (EDV - ESV) / EDV. In
our dataset, and in standard echocardiography practice, the left ventricle is traced at the endocardial
border at two separate time points representing end-systole and end-diastole for each video (Fig. [3).
Each tracing is used to estimate ventricular volume by integration of ventricular area over the length
of the major axis of the ventricle [20]. For each video file, the corresponding labels of end systolic

volume, end diastolic volume, and ejection fraction are provided as CSV files (Table 1). The tracing
file structure is described in Appendix (Table 4).
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Figure 3: Twenty human expert tracings from 10 videos of the left ventricle endocardium used to
calculate end systolic volume and end diastolic volume. Tracings used to estimate left ventricle
volume by integration of area over the length of the ventricle. The ratio of end diastolic volume (EDV,
black) and end systolic volume (ESV, blue) is used to calculate ejection fraction.

2.3 Statistics

The videos are canonical apical-4-chamber or zoomed-in apical-4-chamber echocardiographic views
of sufficient quality for a sonographer to trace left ventricular volumes as part of the standard clinical
workflow.The videos consistent of a series of gray-scale images of 112 by 112 pixels. Each video
has between 24-1002 frames at a mean of 51 frames per second. There is no known relationship
between videos and each video is of a unique individual. Subpopulation data is not available at the
initial release of the dataset, however there is minimal known variation by gender or race within the
range of measurement error for the released corresponding metrics [27, 4} [11]. The current videos are
divided into three splits with roughly 75% for training, 12.5% for validation, and 12.5% for testing.

Table 2: Dataset Summary Statistics

Metric Total Dataset  Training Validation  Test
Number of Videos 10,036 7,465 1,289 1,282
Female (%) 4885 (48%) 3662 (49%) 611 (44%) 612 (44%)
Age (Years) 68 (21) 70 (22) 62 (18) 62 (17)
Frames Per Second 50.9 (6.8) 50.8 (6.7) 51.0(6.5) 51.3(7.3)
Number of Frames 175 (57) 175 (57) 176 (52) 176 (60)
Ejection Fraction (%) 55.7 (12.5) 55.7(12.5) 55.8(12.3) 553 (124)

End Systolic Volume (mL) ~ 43.3 (34.5)  43.2(36.1) 43.3(34.5) 43.9(36.0)
End Diastolic Volume (mL) 91.0 (45.7)  91.0 (46.0)  91.0 (43.8) 91.4 (46.0)




2.4 Deidentification

This research was approved by the University Institutional Review Board and data privacy review
through a standardized workflow by the Center for Artificial Intelligence in Medicine and Imaging
(AIMI) and the University Privacy Office. In addition to masking of text, ECG information, and extra
data outside of the scanning sector in the video files as described below, each DICOM file’s pixel data
was parsed out and saved as an AVI file to prevent any leakage of identifying information through
public or private DICOM tags. Each video was subsequently manually reviewed by an employee of
the Hospital with familiarity with imaging data to confirm the absence of any identifying information.

2.5 Video Processing

The raw images and measurements were obtained from the clinical database of the University
Hospital Echocardiography Lab. Images were acquired by skilled sonographers using iE33, Sonos,
Acuson SC2000, Epiq 5G, or Epiq 7C ultrasound machines and processed images were stored in
Philips Xcelera picture achiving and communication system. Video views were identified through
implicit knowledge of view classification in the clinical database by identifying images and videos
labeled with measurements done in the corresponding view.The apical-4-chamber view video was
identified by extracting the Digital Imaging and Communications In Medicine (DICOM) file linked
to measurements of ventricular volume used to calculate the ejection fraction. Videos were spot
checked for quality control, confirm view classification, and exclude videos with color Doppler. Each
subsequent video was cropped and masked to remove text, ECG and respirometer information, and
other information outside of the scanning sector. The resulting square images were either 600x600 or
768x768 pixels depending on the ultrasound machine and downsampled by cubic interpolation using
OpenCV into standardized 112x112 pixel videos. The pixel data from the DICOM files was saved
into AVI files with hashed file names to future prevent release of potentially identifying metadata in
public or private DICOM tags.

2.6 Non-exhaustive annotation

The ejection fraction, end systolic volume, and end diastolic volumes were measured in the clinical
setting and included in the clinical report, however there can be variation in the setting of atrial fibril-
lation, premature atrial contractions, and other sources of ectopy. The convention is to identify at least
one representative cardiac cycle, and use this representative cardiac cycle to perform measurements.
For this reason, test time augmentation is reasonable if the input clip is significantly smaller in length
than the total video length. Similar non-exhaustive annotation is used in classification datasets such
as Kinetics and ImageNet[30}[19].

2.7 Distribution and Maintenance

The dataset is available electronically at https://echonet.github.io/echoNet/. The authors will maintain
the EchoNet-Dynamic dataset with changes and updates to be described in the corresponding Github
page. Users of this dataset must agree to a Research Use Agreement with the University attesting
to ethical use of the dataset and limitations of its use, such as excluding commercial or clinical use.
Each user must individually register and sign the Research Use Agreement and cannot independently
share the dataset to others.

3 Benchmark Performance

In this section, we briefly describe three convolutional neural network architectures for action
classification [32] repurposed to predict ejection fraction, end systolic volume, and end diastolic
volume from the previously described dataset. We use these architectures as baselines and compare
their performance to human clinical measurements.

We chose three architectures with various forms of spatiotemporal convolutions which has been pre-
viously benchmarked on action classification tasks on Sports-1M, Kinetics, UCF101, and HMDBS51
[32]. These architectures have shown superior performance to image-based 2D CNN architectures
on individual frames of the video for image classification. Image-based 2D CNN architectures have
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Figure 4: Performance on test dataset in predicting ejection fraction, end diastolic volume, and end
systolic volume by R3D model, clip length of 16, sampling rate of 1 in every 4 frames. Represented
as scatter plot and Bland-Altman plot.

been attempted to predict ejection fraction [33, [I5] however their performance has been significantly
inferior compared to human performance.

3.1 Model Architectures

Prior literature has described the performance of convolutional networks coupled with LSTM, two-
stream, and 3D convolutional networks for human action classification in videos[[8], (12, [32]]. In the
interest of creating high performance baselines on standard videos with gray-scale images without
proprocessing or creation of optical flow frames, we evaluated the performance of three architectures



Table 3: Benchmark Model Performance on Test Set (Hyperparameters chosen from Validation Set)

Task Model Clip Length  Sampling Rate MAE RMSE R?

Ejection Fraction Human Experts Entire Video Every Frame 3.12 457 0.88
Ejection Fraction R3D 16 lin4 544  6.16 0.71
Ejection Fraction MC3 16 lin4 591  6.80 0.69
Ejection Fraction R2+1D 16 lin4 6.87 7.55 0.66
End Systolic Volume  R3D 16 lin4 127 193 0.72
End Systolic Volume  MC3 16 lin4 124 183 0.71
End Systolic Volume  R2+1D 16 lin4 12.4 19.7 0.74
End Diastolic Volume R3D 16 lin4 20.0 303 0.64
End Diastolic Volume MC3 16 lin4 51.8 352 0.61
End Diastolic Volume R2+1D 16 lin4 21.1 288 0.60

which combine 3D convolutions over spatiotemporal video volume with residual connections between
layers[32]. Each model uses ResNet-18 as the base architecture and consists of 18 convolutional
layers with residual connections connecting odd numbered layers [16].

The main difference between the three models are the various filters used in each layer and described
in previously [32]]. The R3D model uses convolutional filters of equal size in three dimensions in
width, height, and time. The mixed convolution 3 (MC3) model combines 3D convolutional filters
in the first nine layers with subsequent layers using 2D filters. The R2+1D models factorizes 3D
convolutional filters into separate spatial and temporal components with different spatial and temporal
sizes such that the total number of parameters is similar to the R3D model. The R3D model with
a clip length of 16 and frame sampling rate of 4 performed the best, with a mean absolute error of
5.44%. For context, human accuracy has been described to be about a mean absolute error of 4-5%
for skilled echocardiographers in controlled settings [26) 3} [11].
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Figure 5: Training and Validation Errors for MC3, R2+1D, R3D. There was no significant difference
in performance by transfer learning.

3.2 Implementation Details

The input images scaled to 112 x 112, with no further cropping applied at either training or test
time. For videos whose length was greater than the input clip length, uniform random sampling was
performed both at training and test time. Hyperparameter search of the input clip length (total number
of frames) and sampling rate was performed using the validation set (Fig.[6). Training time increased
linearly with increased input clip length and increased input clip length was associated with better
model performance. Increasing sampling rate (which decreased the input clip length for an video
of equal length) did not significantly affect model performance. Balancing model performance and
training time, we show model performance for an input clip length of 16 frames and a sampling rate
of 1 in 4 frames. This would sample a representative video of 64 frames (approximately 1.2 seconds
of the video).
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Figure 6: Model performance on validation dataset by variable clip length and frame sampling rate.
Performance improved with increasing clip length but plateaued at around 64 frames. Performance
was similar at various sampling rates for an equal total sampled clip length of 64 frames.

All models were initialized with pretrained weights from the the Kinetics-400 dataset. The models
were then trained to minimize the squared loss between the prediction and true ejection fraction using
the SGD optimizer with a learning rate of 0.00005, momentum of 0.9, and batch size of 20 for 45
epochs. Our results were similar to prior experience with the model architectures [32]], however we
did not see significant different in model performance with or without pre-training with Kinetics-400
weights (Fig. [5).

3.3 Relative Performance by Metric

In each prediction task attempted, 3D convolutions with residual connections (R3D model) outper-
formed decomposing spatial and temporal convolutions (R2+1D model) and mixing 3D and 2D
convolutions (MC3 model). All architectures had the highest performance in predicting ejection
fraction. This relative better performance in predicting ejection fraction compared to left ventricular
chamber volumes is consistent with knowledge that the actual ultrasound images are scaled by the
sonographer during acquisition such that the entire left ventricle as well as surrounding structures
are visualized in the apical-4-chamber view. This makes volumetric assessment difficult from the
videos alone, however the ejection fraction depends on the relative change in volume, which is
scale-invariant, and all the necessary information is captured in the video.

4 Discussion

In this paper, we describe the EchoNet-Dynamic Cardiac Motion Video dataset, a set of 10,271 apical-
4-chamber echocardiography videos with tracings and labels of cardiac function. This is the largest
medical video dataset to be made publically available and first large release of echocardiogram data
with labels and tracings. We describe our process for deidentifying and preprocessing medical videos
for public release and identifying relevant labels and tracings. We also present the performance of
three 3D convolutional architectures to assess ejection fraction to close to expert human performance
and as a benchmark for further collaboration, comparison, and creation of task-specific architectures.

Cardiac function is a medical example of a task dependent on motion that would be difficult to assess
based on still motion images alone. While ejection fraction is imperfect, we show that training on
videos of cardiac motion using three different convolutional architectures with residual connections
that have previously only been used for classification tasks also predicts ejection fraction well, close
to human expert performance. Additionally, we show that transfer learning has marginal/limited
benefit on ultrasound images as pre-training with Kinetics-400 did not have significant improvement
in performance.

Important open questions for the community that can be answered with this dataset include how
to improve the reliability and accuracy of cardiac function assessment, evaluation of beat-to-beat
ejection fraction for assessment of cardiac function with an irregular heart rates, supervised or
self-supervised video alignment of the cardiac cycle, and other important cardiology questions.



While this is a comprehensive dataset for the use of video images to evaluate cardiac function,
echocardiography has much more additional phenotypic information. Future work could include the
inclusion of additional echocardiographic views to visualize all segments of the left ventricle, linking
ECG data with echocardiogram data, inclusion of cardiovascular history of patients, and the addition
of temporally separated studies of the sample patients to assess the effect of aging and prognosticate
disease progression.
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Appendix

Table 4: Tracings File Variables

Variable Description

FileName Hashed file name used to link videos, labels, and annotations

X1 X coordinate of left most point of line segment

Yl Y coordinate of left most point of line segment

X1 X coordinate of right most point of line segment

Yl Y coordinate of right most point of line segment

Length Native length in centimeters of line segment

Frame Frame number of video on which tracing was performed
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